Корреляционный анализ

Понятие взаимосвязи довольно распространено в психологических исследованиях. С ним приходится оперировать психологу тогда, когда появляется необходимость сопоставить измерения двух или нескольких показателей признаков или явлений, чтобы сделать какие-либо выводы.

Характер взаимосвязи между изучаемыми явлениями может быть однозначным, т.е. таким, когда определенному значению одною признака соответствует четкое и определенное значение другого. Так, например, в субтесте на поиск закономерностей тестов психических функций количество набранных «сырых» баллов определяется по формуле:
Xi = Sтз — Sоз / Sтз + Sпз * Sbс,
где Xi - значение варианты, Sтз - количество априорно заданных закономерностей (соответствий) в субтесте, Sоз - количество ошибочно указанных соответствий испытуемым, Sоз - количество не указанных (пропущенных) соответствий испытуемым, Sbс - количество всех просмотренных испытуемыми слов в тесте.

Такая взаимосвязь получила название функциональной: здесь один показатель является функцией другого, который представляет собой аргумент по отношению к первому.

Однако однозначная четкая взаимосвязь встречается не всегда. Чаще приходится сталкиваться с таким положением, при котором одному значению признака могут соответствовать несколько значений другого. Эти значения варьируют в пределах более или менее очерченных границ. Такой вид взаимосвязи получил название корреляционной или соотносительной.

Применяется несколько видов выражения корреляционной взаимосвязи. Так, для выражения взаимосвязи между признаками, имеющими количественный характер варьирования своих значений, используют меры центральной тенденции: табулирование с последующим вычислением коэффициента парной корреляции, коэффициент множественной и частной корреляции, коэффициент множественной детерминации, корреляционное отношение.

Если необходимо изучить взаимосвязь между признаками, варьирование которых носит качественный характер (результаты проективных методов исследования личности, исследования по методу Семантического дифференциала, исследования с использованием Открытых шкал и т.д.), то используют коэффициент качественной альтернативной корреляции (тетрахорический показатель), критерий Пирсона x2, показатели сопряженности (контингенции) Пирсона и Чупрова.

Для определения качественно-количественной корреляции, т.е. такой корреляции, когда один признак имеет качественное варьирование, а другой - количественное.применяются специальные методы.

Коэффициент корреляции (термин впервые введен Ф. Гальто-ном в 1888 г.) - показатель силы связи между двумя сопоставляемыми вариантами выборки (выборок). По какой бы формуле не вычислялся коэффициент корреляции, его величина колеблется в пределах от -1 до +1. В случае полной положительной корреляции этот коэффициент равен плюс 1, а при полной отрицательной - минус 1. Обычно это прямая линия, проходящая через точки пересечения значений каждой пары данных.

Если значения вариант не выстраиваются на прямой, а образуют «облако», то коэффициент корреляции по абсолютной величине становится меньше единицы и по мере округления «облака» приближается к нулю. Если коэффициент корреляции равен 0, обе варианты полностью независимы друг от друга.

Всякое вычисленное (эмпирическое) значение коэффициента корреляции должно быть проверено на достоверность (статистическую значимость) по соответствующим таблицам критических значений коэффициента корреляции. Если эмпирическое значение меньше или равно табличному для 5-процентного уровня (Р = 0,05), корреляция не является значимой. Если вычисленное значение коэффициента корреляции больше табличного для Р = 0,01, корреляция статистически значима (достоверна).

В случае, когда величина коэффициента заключена между 0,05 > Р > 0.01, на практике говорят о значимости корреляции для Р = 0,05.

Коэффициент корреляции Браве-Пирсона (г) - это предложенный в 1896 г. параметрический показатель, для вычисления которого сравнивают средние арифметические и средние квадратические значения вариант. Для вычисления этого коэффициента применяют следующую формулу (у разных авторов она может выглядеть по-разному):
r= (E Xi • Xi1) - NXap • X1ap / N-1 • Qx • Qx1,

где E Xi • Xi1 - сумма произведений значений попарно сопоотавимых вариантов, n-колличество сравниваемых пар, NXap, X1ap - средние арифметические вариант Xi, Xi; соответственно, Qx, Qx, -средние квадратические отклонения распределений х и х.

Коэффициент корреляции рангов Спирмена Rs (коэффициент ранговой корреляции, коэффициент Спирмена) является простейшей формой коэффициента корреляции и измеряет связь между рангами (местами) данной варианты по разным признакам, не учитывая ее собственного значения. Здесь исследуется скорее качественная связь, чем количественная.

Обычно этот непараметрический критерий используется в случаях, когда нужно сделать выводы не столько об интервалах между данными, сколько об их рангах, а также тогда, когда кривые распределения крайне асимметричны и не позволяют использовать такие параметрические критерии, как коэффициент корреляции Браве-Пирсона (в этих случаях бывает необходимо превратить количественные данные в порядковые). Если коэффициент Rs близок к +1, то это означает, что два ряда ранжированной по тем или иным признакам выборки практически совпадают, а если этот коэффициент близок к - 1, можно говорить о полной обратной зависимости.

Как и вычисление коэффициента корреляции Браве-Пирсона, вычисления коэффициента Rs удобнее представлять в табличной форме.

Регрессия обобщает понятие функциональной взаимосвязи на случай стохастического (вероятностного) характера зависимости между значениями вариант. Целью решения категории регрессионных задач является оценка значения непрерывной выходной вариативности по значениям входных вариант.