Закон независимого распределения

Скрещиваются особи, отличающиеся по двум парам аллелей и более. Каждая пара альтернативных признаков ведет себя в ряду поколений независимо друг от друга, в результате чего среди потомков первого поколения (F2) в определенном соотношении появляются особи с новыми (по сравнению с родительскими) комбинациями признаков. Например, в случае полного доминирования при скрещивании исходных форм, различающихся по двум признакам, в следующем поколении (F1) выявляются особи с четырьмя фенотипами в соотношении 9:3:3:1. При этом два фенотипа имеют «родительские» сочетания признаков, а оставшиеся два - новые. Данный закон основан на независимом поведении (расщеплении) нескольких пар гомологичных хромосом. Так, при дигибридном скрещивании это приводит к образованию у гибридов первого поколения (F1) 4 типов гамет (АВ, Ав, аВ, ав), а после образования зигот - к закономерному расщеплению по генотипу и, соответственно, по фенотипу в следующем поколении (F2).

Парадоксально, но в современной науке огромное внимание уделяется не столько самому закону независимого распределения в его исходной формулировке, сколько исключениям из него. Закон независимого комбинирования не соблюдается в том случае, если гены, контролирующие изучаемые признаки, сцеплены, т.е. располагаются по соседству друг с другом на одной и той же хромосоме и передаются по наследству как связанная пара элементов, а не как отдельные элементы.

В случаях, когда наследуемость определенной пары генов не подчиняется этому закону Менделя, вероятнее всего эти гены наследуются вместе и, следовательно, располагаются на хромосоме в непосредственной близости друг от друга. Зависимое наследование генов называется сцеплением, а статистический метод, используемый для анализа такого наследования называется методом сцепления. Однако при определенных условиях закономерности наследования сцепленных генов нарушаются. Основная причина этих нарушений -явление крос-синговера, приводящего к перекомбинации генов. Биологическая основа рекомбинации заключается в том, что в процессе образования гамет гомологичные хромосомы, прежде чем разъединиться, обмениваются своими участками.

Законы Менделя в их классической форме действуют при наличии определенных условий:
1) гомозиготность исходных скрещиваемых форм;
2) образование гамет гибридов всех возможных типов в равных соотношениях (обеспечивается правильным течением мейоза; одинаковой жизнеспособностью гамет всех типов; равной вероятностью встречи любых гамет при оплодотворении);
3) одинаковая жизнеспособность зигот всех типов.

Знание и применение законов Менделя имеет огромное значение в медико-генетическом консультировании и определении генотипа фенотипически «здоровых» людей, родственники которых страдали наследственными заболеваниями, а также в выяснении степени риска развития этих заболевании у родственников больных.

Изменчивость - способность организмов приобретать новые признаки - различия в пределах вида. Выделяют две формы изменчивости: наследственную и модификационную (ненаследственную).

Наследственная изменчивость - форма изменчивости, вызванная изменениями генотипа, которые могут быть связаны с мутационной либо комбинативной изменчивостью.
Гены время от времени подвергаются изменениям, которые получили название мутации.

Мутации (лат. mutatio - изменение) - это внезапные, естественные или вызванные искусственно наследуемые изменения генетического материала, приводящие к изменению тех или иных фенотипических признаков организма. Имеют случайный характер и появляются спонтанно при воздействии определенных химических веществ, радиации, температуры и т.д. Предсказать появление той или иной мутации невозможно.

Возникшие мутации передаются потомкам, т.е. определяют наследственную изменчивость. Если мутация произошла в половой клетке, то у нее есть возможность передаться потомкам, т.е. быть унаследованной. Если мутация произошла в соматической клетке, то она передается только тем клеткам, которые возникают из этой соматической клетки. Такие мутации называются соматическими, они не передаются по наследству.

Наследственная изменчивость (мутационная или ге-нотипическая) связана с изменением генотипа особи, поэтому возникающие изменения наследуются. Она является материалом для естественного отбора. Дарвин назвал эту наследственность неопределенной. Основой наследственной изменчивости являются мутации - внезапные скачкообразные и ненаправленные изменения исходной формы. Они ведут к появлению у живых организмов качественно новых наследственных признаков и свойств, которых ранее в природе не существовало. Источник наследственной изменчивости - мутационный процесс.

Различают несколько типов мутаций: геномные, хромосомные и генные.

Геномные мутации (полиплоидия и анеуплоидия) - это изменения числа хромосом. Полиплоидия - это кратное увеличение гаплоидного набора хромосом (Зп, 4п и т.д.). Чаще всего полиплоидия образуется при нарушении расхождения хромосом к полюсам клетки в мейозе или митозе под действием мутагенных факторов. Она широко распространена у растений и крайне редко встречается у животных.

Анеуплоидия - увеличение или уменьшение числа хромосом по отдельным парам. Она возникает при нерасхождении хромосом в мейозе или хроматид в митозе. Анеуплоиды встречаются у растений и животных и характеризуются низкой жизнеспособностью.

Хромосомные мутации - это изменения структуры хромосом. Различают следующие виды хромосомных мутаций:
1. Дефишенсия - потеря концевых участков хромосом.
2. Делении - выпадение участка плеча хромосом.
3. Дупликация - повторение набора генов в определенном участке хромосомы.
4. Инверсия - поворот участка хромосом на 180°.
5. Транслокация - перенос участка к другому концу той же хромосомы либо к другой, негомологичной хромосоме.

Генные мутации - изменения нуклеотидной последовательности молекулы ДНК (гена). Их результат - изменение последовательности аминокислот в полипелтидной цепи, и появление белка с новыми свойствами. Большая часть генных мутаций фенотипически не проявляется, поскольку они рецессивны.

Цитоплазматические мутации связаны с изменениями органоидов цитоплазмы, содержащих ДНК (митохондрии и пластиды). Эти мутации наследуются по материнской линии, т.к. зигота при оплодотворении всю цитоплазму получает от яйцеклетки. Пример: пестролистность растений связана с мутациями в хлоропластах.

Комбинативная изменчивость определяется характером полового процесса и проявляется уже на стадии образования половых клеток - возникают новые генотипы из-за новых комбинаций генов. В каждой половой клетке (гамете) представлена только одна гомологичная хромосома из каждой пары. Хромосомы попадают в гамету абсолютно случайным образом, поэтому половые клетки одного человека могут довольно сильно отличаться по набору генов в хромосомах. Еще более важная стадия для возникновения комби-нативной изменчивости - это оплодотворение, после которого у вновь возникшего организма 50% генов унаследовано от одного родителя, а 50% - от другого.

Модификационная изменчивость - форма изменчивости, не связанная с изменениями генотипа и вызванная влиянием среды на развивающийся организм.

Наличие модификационной изменчивости очень важно для понимания сущности наследования. Наследуются не признаки. Можно взять организмы с абсолютно одинаковым генотипом, например, вырастить черенки от одного и того же растения, но поместить их при этом в разные условия (освещенность, влажность, минеральное питание) и получить достаточно сильно отличающиеся растения с разными признаками (рост, урожайность, форма листьев и т.п.).

Для описания реально сформировавшихся признаков организма используют понятие фенотип.

Фенотипы не наследуются, а формируются в течение жизни; они - продукт чрезвычайно сложного взаимодействия генотипа и среды.

Фенотип - это весь комплекс реально возникших признаков организма. Фенотип формируется как результат взаимодействия генотипа и влияний среды в ходе развития организма. Фенотипы не наследуются, а формируются в течение жизни; они - продукт чрезвычайно сложного взаимодействия генотипа и среды. Таким образом, сущность наследования заключается не в наследовании признака, а в способности генотипа в результате взаимодействия с условиями развития давать определенный фенотип.

Важно отметить, что существуют единичные признаки, фенотип которых полностью определяется их генетическими механизмами. Примеры таких признаков - полидактилия (наличие добавочного пальца) или группа крови человека. Однако подобных признаков совсем немного, и за очень редким исключением фенотип признака определяется совместным влиянием генотипа и среды, в которой этот генотип существует.

Модификации не передаются по наследству Обычно это положение почему-то с трудом принимается. Кажется, что если, скажем, родители на протяжении нескольких поколений тренируются в поднятии тяжестей и обладают развитой мускулатурой, то эти свойства должны обязательно передаться детям. Между тем это типичная модификация, а тренировки - это и есть то воздействие среды, которое повлияло на развитие признака. Никаких изменений генотипа при модификации не происходит, и приобретенные в результате модификации признаки не наследуются.

Для характеристики пределов модификационной изменчивости существует понятие норма (диапазон) реакции. Некоторые признаки у человека невозможно изменить за счет средовых влияний, например, группу крови, пол, цвет глаз. Другие, напротив, очень чувствительны к воздействию среды. К примеру, в результате длительного пребывания на солнце цвет кожи становится значительно темнее, а волосы, наоборот, светлеют. На вес человека сильно влияют характер питания, болезни, наличие вредных привычек, стресс, образ жизни.

Средовые воздействия могут приводить не только к количественным, но и к качественным изменениям фенотипа. У некоторых видов примулы при содержании при пониженной температуре (15-20°С) появляются цветы красного цвета, если же растения поместить во влажную среду при температуре 30°С, то образуются белые цветки.

Причем, хотя норма реакции характеризует ненаследственную форму изменчивости (модификационную изменчивость), она тоже определяется генотипом. Это положение достаточно важно - норма реакции зависит от генотипа. Одно и то же воздействие среды у одного генотипа может привести к сильному изменению признака и никак не повлиять на другой.

Общее в понятиях нормы и диапазона реакции заключается в следующем. Нормой (диапазоном) реакции данного генотипа называется система, описывающая множество фенотипов, существование которых потенциально возможно в том случае, если данный генотип будет находиться во взаимодействии с определенными средами. Понятия и нормы, и диапазона реакции предполагают, что каждый генотип ассоциируется с определенным, характерным для него, рядом фенотипов, формирующихся в разных средах.

Различия в понятиях нормы и диапазона реакции состоят в следующем. Рассмотрим гипотетический пример, касающийся фенотипического признака, который отражает какие-то специфические способности. Предположим, существует 4 генотипа (1, 2, 3, 4), и все эти генотипы могут быть одновременно помещены в разные типы сред, отличающиеся друг от друга по уровню разнообразия и обогащенности.

Понятие диапазона реакции подразумевает сохранение рангов фенотипических значений генотипов в разных средовых условиях. Например, Генотип]; ассоциируется с низкими фено-типическими значениями и в обедненной, и в обогащенной средах, в то время как Генотип4 является наиболее «процветающим» в любой среде. Соответственно, диапазон реакции Генотипа, - наименьший, а диапазон реакции Генотипа^ - наибольший. Иными словами, основным допущением при интерпретации понятия «диапазон реакции» служит следующее предположение: существующие генотипы отличаются друг от друга таким образом, что фенотипические преимущества каждого из этих генотипов постоянны, а фенотипические различия, ассоциируемые с каждым из генотипов, становятся все более заметны по мере того, как среда становится все более благоприятной для развития данного фенотипического признака. Если взять в качестве примера математические способности, то носители Генотипа4 будут демонстрировать наивысшие значения как в обедненной, так и в обогащенной среде, причем чем благоприятнее среда, тем выше уровень математических достижений. Напротив, носители Генотипа,, будут иметь наименьшие фенотипические значения в любой среде, а фенотипические изменения, характеризующие этот фенотип при переходе из одних средовых условий в другие, будут незначительны.